SPECIFICATIONS

RF Power Sensor Device

Contents

Definitions1
Conditions
General
Uncertainty
Power Measurement
Continuous Mode6
Scope Mode
Time Slot Mode
Trigger
Internal Trigger
Trigger In
Trigger Out
Interface
Maximum Damage Levels
DC Power Requirements (5 V) from Host USB
Calibration
Physical Characteristics
Environment
Operating Environment
Storage Environment
Shock and Vibration
Compliance and Certifications
Safety
Electromagnetic Compatibility
CE Compliance
Online Product Certification
Environmental Management11

Definitions

Warranted specifications describe the performance of a model under stated operating conditions and are covered by the model warranty.

The following characteristic specifications describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

- *Typical* specifications describe the performance met by a majority of models.
- *Nominal* specifications describe an attribute that is based on design, conformance testing, or supplemental testing.

Specifications are Typical unless otherwise noted.

Conditions

Minimum or maximum specifications are warranted under the following conditions unless otherwise noted.

- 1 hour warm-up time at ambient temperature
- Calibration cycle maintained
- Temperature 0 °C to 55 °C

General

10 MHz to 18 GHz		
-60 dBm to +20 dBm		
<1.17:1		
<1.12:1		
<1.22:1		
<1.25 : 1		
+4 dBm to +20 dBm, typical		
-16 dBm to +4 dBm, typical		
-60 dBm to -16 dBm, typical		
50 kHz, typical		

Uncertainty

Absolute Power Measurement Uncertainty¹

Demos Massured (dBm)		Freq	uency (GHz)	
Power Measured (dBm)	≤0.05	>0.05 to 2	>2 to 12.4	>12.4 to 18
-60 to <-16	0.14	0.14	0.14	0.17
-16 to <+4	0.14	0.14	0.13	0.13
+4 to +20	0.14	0.15	0.15	0.14

Table 1. Measurement Uncertainty (dB), 0 °C to 50 °C

Table 2. Measurement Uncertainty (dB), 20 °C to 30 °C

Power Measured (dBm)		Freq	uency (GHz)	
	≤0.05	>0.05 to 2	>2 to 12.4	>12.4 to 18
-60 to <-16	0.13	0.12	0.14	0.14
-16 to <+4	0.11	0.10	0.13	0.11
+4 to +20	0.11	0.10	0.10	0.11

Relative Power Measurement Uncertainty²

Table 3. Measurement Uncertainty (dB), ≤0.05 GHz

		nal Power Me	easured (d	Bm)		
Initial Power Measured (dBm)	0 °C to 50 °C				20 °C to 30 °	°C
	+4 to +20	-16 to <+4	-60 to <-16	+4 to +20	-16 to <+4	-60 to <-16
-60 to <-16	0.14	0.13	0.03	0.08	0.09	0.03
-16 to <+4	0.14	0.04	0.13	0.06	0.03	0.09
+4 to +20	0.05	0.14	0.14	0.05	0.06	0.08

¹ Expanded uncertainty with k = 2 for a CW measurement after zeroing. Includes calibration factor and linearity; noise, zero set and drift must be added.

² Expanded uncertainty with k = 2 for measurement of a change in power of a CW signal after zeroing. Includes calibration factor and linearity; noise, zero set and drift must be added.

	Final Power Measured (dBm)					
Initial Power Measured (dBm)	0 °C to 50 °C				20 °C to 30 °	°C
, , , , , , , , , , , , , , , , , , ,	+4 to +20	-16 to <+4	-60 to <-16	+4 to +20	-16 to <+4	-60 to <-16
-60 to <-16	0.16	0.16	0.03	0.11	0.12	0.03
-16 to <+4	0.17	0.05	0.16	0.09	0.04	0.12
+4 to +20	0.06	0.17	0.16	0.06	0.09	0.11

Table 4. Measurement Uncertainty (dB), >0.05 GHz to 2 GHz

Table 5. Measurement Uncertainty (dB), >2 GHz to 12.4 GHz

		Fi	Bm)			
Initial Power Measured (dBm)	0 °C to 50 °C				20 °C to 30 °	°C
, , , , , , , , , , , , , , , , , , ,	+4 to +20	-16 to <+4	-60 to <-16	+4 to +20	-16 to <+4	-60 to <-16
-60 to <-16	0.16	0.16	0.04	0.12	0.14	0.04
-16 to <+4	0.17	0.05	0.16	0.10	0.04	0.14
+4 to +20	0.06	0.17	0.16	0.07	0.10	0.12

Table 6. Measurement Uncertainty (dB), >12.4 GHz to 18 GHz

		Fi	easured (d	Bm)		
Initial Power Measured (dBm)	0 °C to 50 °C				20 °C to 30 °	°C
,	+4 to +20	-16 to <+4	-60 to <-16	+4 to +20	-16 to <+4	-60 to <-16
-60 to <-16	0.14	0.15	0.04	0.12	0.14	0.04
-16 to <+4	0.11	0.06	0.15	0.10	0.05	0.14
+4 to +20	0.06	0.11	0.14	0.06	0.10	0.12

Power Measured (dBm)	Noise ³	Zero Set ⁴	Zero Drift ⁵
-60 to <-16	<123 pW	<332 pW	<344 pW
-16 to <+4	<10.1 nW	<38.7 nW	<42.9 nW
+4 to +20	<0.856 µW	<1.07 µW	<0.996 µW

Table 7. Noise, Zero Set, Zero Drift Uncertainty

Table 8. Effects of Digital Modulation⁶

Power Measured (dBm)	Uncertainty (dB)
-60 to <-16	+0.080/-0.048
-16 to <+4	+0.088/-0.038
+4 to +20	+0.067/-0.055

Power Measurement

Average power
0.01 dB maximum
-100 dB to +150 dB
Auto, manual
Moving, repeat
1 to 65,536

³ Noise is specified as two-sigma (at three-sigma confidence) after zero operation when measured with 10.2 seconds of measurement time (measurement time = Aperture Time * Number of Averages). Effect of noise can be reduced by increasing the number of averages and/or increasing the aperture time. Noise decreases at a rate equal to the square root of the number of averages and aperture time.

⁴ Zero set is specified as the mean (at three-sigma confidence) after zero operation when measured with 256 averages and 40 ms aperture time for 1 hour, and when keeping the temperature within ±1 °C.

⁵ Zero drift is specified as two-sigma (at three-sigma confidence) after zero operation when measured with 256 averages and 40 ms aperture time for 1 hour, and when keeping the temperature within ± 1 °C.

⁶ Measurement error with reference to a CW signal of equal power and frequency at 20 °C to 30 °C.

⁷ Maximum number of averages allowed in Continuous mode and Time Slot mode is 65,536. In Scope mode, the maximum number of averages is equal to 16,777,216 divided by the number of data points.

Auto-averaging

Resolution⁸

Source

1 dB, 0.1 dB, 0.01 dB

Time Slot mode: 1 to 128 slots; or Scope mode: 1 to 16,384 data points

Continuous Mode

Duty cycle correction	0.001% to 100%
Aperture time	0.01 ms to 1 s
Maximum buffer size	8,192
Measurement time ⁹	Up to 1,000 measurements per second, unbuffered More than 10,000 measurements per second, buffered

Averages = 1, in ms	Averages = 10, in ms
1.0	1.5
1.2	3.0
4.0	19.1
34.6	187
347	1907
	Averages = 1, in ms 1.0 1.2 4.0 34.6

Table 9. Measurement Time Examples

Scope Mode

Capture time	0.01 ms to 1 s
Data points	1 to 16,384

⁸ Averaging resolution of 0.001 dB is not available with the NI-568x SFP. This feature is only available when using the NI-568x instrument driver. Averaging resolution is defined as the place after the decimal to which the reading becomes stable.

⁹ Times are typical based on benchmark results taken using an NI PXIe-8135 controller and an USB-5684. Performance may vary based on system configuration. Trigger source set to Immediate. Number of Averages = 1 for repeat average mode.

Resolution	0.01 ms maximum
Measurement time ¹⁰	<i>Capture Time</i> * 6.2 + 0.013

Time Slot Mode

128
0.01 ms to 100 ms
1,000 ms (Slot Width * Number of Slots)
0.01 maximum
0 ms to 10 ms
0 ms to 10 ms

Trigger

Internal Trigger

Source ¹²	Bus or Continuous (Auto, Single or Multiple)
Range	-35 dBm to +20 dBm
Level accuracy	±0.5 dB, typical
Slope	Positive or negative
Delay range	-5 ms to 10 s
Delay resolution	10 µs
Trigger In	

Impedance	4 k Ω , nominal
Туре	TTL/CMOS
Slope	Positive
Delay range	-5 ms to 10 s

¹⁰ Times are typical based on benchmark results taken using an NI PXIe-8135 controller and an USB-5684. Performance may vary based on system configuration. Trigger source set to Immediate. Number of Averages = 1 for repeat average mode.

¹¹ The start exclusion time plus the end exclusion time must be less than the slot width.

¹² Software trigger not available in the NI-568x SFP. This feature is only available when using the NI-568x instrument driver. Internal and external triggers are not available when using Continuous acquisition mode.

Delay resolution	10 μs
Voltage high threshold	2.3 V, typical
Voltage low threshold	1.2 V, typical
Hysteresis	0.2 V, typical
Maximum voltage	±5.5 V
Minimum pulse width	100 ns
Latency ¹³	10.6 μs, maximum
Repetition period	14.2 μs, minimum

Trigger Out

Trigger Out capability is not currently implemented.

Interface

RF connector	N (m)
Interface to host	USB 2.0 full speed (compatible with USB 1.0 and USB 1.1)
External trigger input	MCX(f)

Maximum Damage Levels

Maximum DC voltage at RF port	±20 V
Maximum power at RF port	+30 dBm (+34 dBm for 10 μ s pulse, 10% duty cycle)
Maximum voltage at trigger input	5.5 V

DC Power Requirements (5 V) from Host USB

Typical current

450 mA

Caution You can impair the protection provided by the USB-5684 if you use it in a manner not described in this document.

¹³ Latency is defined as the time delay between the sensor receiving the trigger and the measurement initiation.

Calibration

Interval

/1`

1 year; calibration interval starts with the date the product is put into service by the customer

Physical Characteristics

Dimensions	110 mm x 45 mm x 25.6 mm, excluding RF connector and silicone cover
Weight	397 g (0.88 lb)

Caution Clean the hardware with a soft, nonmetallic brush. Make sure the hardware is completely dry and free from contaminants before returning it to service.

Environment

Maximum altitude	4,600 m operational
Pollution Degree	2

Indoor use only.

Operating Environment

Ambient temperature range	0 °C to 50 °C (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2.)
Relative humidity range ¹⁴ (noncondensing)	
At 50 °C	45%
At 40 °C	75%
At 30 °C	95%

Storage Environment

Ambient temperature range	-40 °C to +71 °C (Tested in accordance with MIL-PRF-28800F (Class 3).)
Relative humidity range	5% to 95%, noncondensing (Tested in accordance with MIL-PRF-28800F (Class 3).)

¹⁴ Tested in accordance with IEC 60068-2-56.

Shock and Vibration

Operating shock	30 g peak, half-sine, 11 ms pulse (Tested in accordance with IEC 60068-2-27. Meets MIL-PRF-28800F Class 2 limits.)
Random vibration	
Operating	5 Hz to 500 Hz, 0.3 g _{rms}
Nonoperating	5 Hz to 500 Hz, 2.4 g _{rms} (Tested in accordance with IEC 60068-2-64. Nonoperating test profile exceeds the requirements of MIL-PRF-28800F, Class 3.)

Compliance and Certifications

Safety

This product is designed to meet the requirements of the following electrical equipment safety standards for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA C22.2 No. 61010-1

Note For UL and other safety certifications, refer to the product label or the *Online Product Certification* section.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- EN 55022 (CISPR 22): Class A emissions
- EN 55024 (CISPR 24): Immunity
- AS/NZS CISPR 11: Group 1, Class A emissions
- AS/NZS CISPR 22: Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada, Australia, and New Zealand (per CISPR 11), Class A equipment is intended for use only in heavy-industrial locations.

Note Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.

Note For EMC declarations, certifications, and additional information, refer to the *Online Product Certification* section.

CE Compliance $C \in$

This product meets the essential requirements of applicable European Directives, as follows:

- 2014/35/EU; Low-Voltage Directive (safety)
- 2014/30/EU; Electromagnetic Compatibility Directive (EMC)

Online Product Certification

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for this product, visit *ni.com/ certification*, search by model number or product line, and click the appropriate link in the Certification column.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the *Minimize Our Environmental Impact* web page at *ni.com/environment*. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

Waste Electrical and Electronic Equipment (WEEE)

EU Customers At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit *ni.com/environment/weee*.

电子信息产品污染控制管理办法(中国 RoHS)

中国客户 National Instruments 符合中国电子信息产品中限制使用某些有害物质指令(RoHS)。关于 National Instruments 中国 RoHS 合规性信息,请登录 ni.com/environment/rohs_china。(For information about China RoHS compliance, go to ni.com/environment/rohs_china.)

Information is subject to change without notice. Refer to the *NI Trademarks and Logo Guidelines* at ni.com/trademarks for information on NI trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering NI products/technology, refer to the appropriate location: **Help**»**Patents** in your software, the patents.txt file on your media, or the *National Instruments Patent Notice* at ni.com/patents. You can find information about end-user license agreements (EULAs) and third-party legal notices in the readme file for your NI product. Refer to the *Export Compliance Information* at ni.com/legal/export-compliance for the NI global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data. NI MAKES NO EXPRESS OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY ERRORS. U.S. Government Customers: The data contained in this manual was developed at private expense and is subject to the applicable limited rights and restricted data rights as set forth in FAR 52.227-14, DFAR 252.227-7014, and DFAR 252.227-7015.

© 2015-2018 National Instruments. All rights reserved.